4,183 research outputs found

    The early expansion and evolutionary dynamics of POU class genes.

    Get PDF
    The POU genes represent a diverse class of animal-specific transcription factors that play important roles in neurogenesis, pluripotency, and cell-type specification. Although previous attempts have been made to reconstruct the evolution of the POU class, these studies have been limited by a small number of representative taxa, and a lack of sequences from basally branching organisms. In this study, we performed comparative analyses on available genomes and sequences recovered through "gene fishing" to better resolve the topology of the POU gene tree. We then used ancestral state reconstruction to map the most likely changes in amino acid evolution for the conserved domains. Our work suggests that four of the six POU families evolved before the last common ancestor of living animals-doubling previous estimates-and were followed by extensive clade-specific gene loss. Amino acid changes are distributed unequally across the gene tree, consistent with a neofunctionalization model of protein evolution. We consider our results in the context of early animal evolution, and the role of POU5 genes in maintaining stem cell pluripotency

    Confocal analysis of nervous system architecture in direct-developing juveniles of Neanthes arenaceodentata (Annelida, Nereididae)

    Get PDF
    Background: Members of Family Nereididae have complex neural morphology exemplary of errant polychaetes and are leading research models in the investigation of annelid nervous systems. However, few studies focus on the development of their nervous system morphology. Such data are particularly relevant today, as nereidids are the subjects of a growing body of "evo-devo" work concerning bilaterian nervous systems, and detailed knowledge of their developing neuroanatomy facilitates the interpretation of gene expression analyses. In addition, new data are needed to resolve discrepancies between classic studies of nereidid neuroanatomy. We present a neuroanatomical overview based on acetylated α-tubulin labeling and confocal microscopy for post-embryonic stages of Neanthes arenaceodentata, a direct-developing nereidid. Results: At hatching (2-3 chaetigers), the nervous system has developed much of the complexity of the adult (large brain, circumesophageal connectives, nerve cords, segmental nerves), and the stomatogastric nervous system is partially formed. By the 5-chaetiger stage, the cephalic appendages and anal cirri are well innervated and have clear connections to the central nervous system. Within one week of hatching (9-chaetigers), cephalic sensory structures (e.g., nuchal organs, Langdon's organs) and brain substructures (e.g., corpora pedunculata, stomatogastric ganglia) are clearly differentiated. Additionally, the segmental-nerve architecture (including interconnections) matches descriptions of other, adult nereidids, and the pharynx has developed longitudinal nerves, nerve rings, and ganglia. All central roots of the stomatogastric nervous system are distinguishable in 12-chaetiger juveniles. Evidence was also found for two previously undescribed peripheral nerve interconnections and aspects of parapodial muscle innervation. Conclusions: N. arenaceodentata has apparently lost all essential trochophore characteristics typical of nereidids. Relative to the polychaete Capitella, brain separation from a distinct epidermis occurs later in N. arenaceodentata, indicating different mechanisms of prostomial development. Our observations of parapodial innervation and the absence of lateral nerves in N. arenaceodentata are similar to a 19th century study of Alitta virens (formerly Nereis/Neanthes virens) but contrast with a more recent study that describes a single parapodial nerve pattern and lateral nerve presence in A. virens and two other genera. The latter study apparently does not account for among-nereidid variation in these major neural features

    Attempted DNA extraction from a Rancho La Brea Columbian mammoth (Mammuthus columbi): prospects for ancient DNA from asphalt deposits.

    Get PDF
    Fossil-bearing asphalt deposits are an understudied and potentially significant source of ancient DNA. Previous attempts to extract DNA from skeletons preserved at the Rancho La Brea tar pits in Los Angeles, California, have proven unsuccessful, but it is unclear whether this is due to a lack of endogenous DNA, or if the problem is caused by asphalt-mediated inhibition. In an attempt to test these hypotheses, a recently recovered Columbian mammoth (Mammuthus columbi) skeleton with an unusual pattern of asphalt impregnation was studied. Ultimately, none of the bone samples tested successfully amplified M. columbi DNA. Our work suggests that reagents typically used to remove asphalt from ancient samples also inhibit DNA extraction. Ultimately, we conclude that the probability of recovering ancient DNA from fossils in asphalt deposits is strongly (perhaps fatally) hindered by the organic compounds that permeate the bones and that at the Rancho La Brea tar pits, environmental conditions might not have been ideal for the general preservation of genetic material

    Compatibility of quantum states

    Full text link
    We introduce a measure of the compatibility between quantum states--the likelihood that two density matrices describe the same object. Our measure is motivated by two elementary requirements, which lead to a natural definition. We list some properties of this measure, and discuss its relation to the problem of combining two observers' states of knowledge.Comment: 4 pages, no figure

    A C-13(alpha,n)O-16 calibration source for KamLAND

    Full text link
    We report on the construction and performance of a calibration source for KamLAND using the reaction C-13(alpha,n)O-16 with Po-210 as the alpha progenitor. The source provides a direct measurement of this background reaction in our detector, high energy calibration points for the detector energy scale, and data on quenching of the neutron visible energy in KamLAND scintillator. We also discuss the possibility of using the reaction C-13(alpha,n)O-16 as a source of tagged slow neutrons.Comment: 6 pages, 4 figures. Revised to agree with the published tex

    Canopy Flow Analysis Reveals the Advantage of Size in the Oldest Communities of Multicellular Eukaryotes

    Get PDF
    SummaryAt Mistaken Point, Newfoundland, Canada, rangeomorph “fronds” dominate the earliest (579–565 million years ago) fossil communities of large (0.1 to 2 m height) multicellular benthic eukaryotes. They lived in low-flow environments, fueled by uptake [1–3] of dissolved reactants (osmotrophy). However, prokaryotes are effective osmotrophs, and the advantage of taller eukaryotic osmotrophs in this deep-water community context has not been addressed. We reconstructed flow-velocity profiles and vertical mixing using canopy flow models appropriate to the densities of the observed communities. Further modeling of processes at organismal surfaces documents increasing uptake with height in the community as a function of thinning of the diffusive boundary layer with increased velocity. The velocity profile, produced by canopy flow in the community, generates this advantage of upward growth. Alternative models of upward growth advantage based on redox/resource gradients fail, given the efficiency of vertical mixing. In benthic communities of osmotrophs of sufficient density, access to flow in low-flow settings provides an advantage to taller architecture, providing a selectional driver for communities of tall eukaryotes in contexts where phototropism cannot contribute to upward growth. These Ediacaran deep-sea fossils were preserved during the increasing oxygenation prior to the Cambrian radiation of animals and likely represent an important phase in the ecological and evolutionary transition to more complex eukaryotic forms.Video Abstrac
    corecore